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1. Introduction

Emergence of space-time is one of the key concepts in nonperturbative definition of super-

string or M-theory by matrix models [1, 2]. This phenomenon in field theory was found

over two decades ago in the large N reduction of gauge theories [3 – 7], which states equiv-

alence under some conditions between a large N gauge theory and the matrix model that

is its dimensional reduction to a point. This equivalence originates from the fact that the

eigenvalues of matrices can be interpreted as momenta. This interpretation reappeared in

the T-duality between the low-energy effective theories for Dp-branes and for D(p − 1)-

branes [8, 9]. More concretely, this T-duality tells that a U(N) gauge theory on Rp × S1

is equivalent to the U(N × ∞) gauge theory that is its dimensional reduction to Rp if a

periodicity condition is imposed to the theory on Rp.

The main purpose of this paper is to extend the T-duality for gauge theory to that

on curved space described as a nontrivial fiber bundle. The above mentioned T-duality is

concerning a trivial S1 bundle, Rp ×S1. We restrict ourselves to principal S1 bundles and

show the T-duality between the gauge theories on the total space and on the base space.

We also present a new viewpoint concerning the consistent truncation and the T-duality for
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gauge theory. Furthermore, we discuss the properties of the vacua1 on the total space and

the base space. In our previous publication [10] on the gauge/gravity correspondence for

the SU(2|4) symmetric theories [11] (see also [12 – 17]), we showed the T-duality between

N = 4 super Yang Mills (SYM) on R × S3(/Zk) and 2 + 1 SYM on R × S2, which is

suggested from the gravity side. This is regarded as the T-duality on S3(/Zk), which is a

nontrivial S1 fibration over S2. In this paper, we generalize this result. Our findings would

be useful for the study of describing curved space-time in matrix models [18 – 20] as well

as the study of curved D-branes.

This paper is organized as follows. In section 2, we review the T-duality for gauge

theory in a standard way. In section 3, we present a new viewpoint concerning the consistent

truncation and the T-duality for gauge theory. Although this viewpoint is not necessarily

needed for the proof of the T-duality on fiber bundle, it is interesting itself and indeed makes

the T-duality for gauge theory more plausible. In section 4, we consider a dimensional

reduction from the total space of a principal S1 bundle to its base space. In section 5, we

show the T-duality between the gauge theories on the base space and the total space. In

section 6, we discuss the properties of the nontrivial vacua on the total space and the base

space. We classify the vacua on the total space and discuss their relation to the vacua

on the base space. In section 7, we present some examples: S3(/Zk), S5(/Zk) and the

Heisenberg nilmanifold. Section 8 is devoted to conclusion and discussion.

2. Review of T-duality for gauge theory

In this section, we give a standard review of the T-duality between the gauge theories on

Rp × S1 and Rp [8, 9]. We first consider pure Yang Mills on Rp × S1:

Sp+1 =
1

g2
p+1

∫

dp+1z
1

4
Tr(FMNFMN ), (2.1)

where zM (M = 1, . . . , p+1) are decomposed into (xµ, y) (µ = 1, . . . , p), y parameterizes S1

with the radius R and FMN = ∂MAN − ∂NAM − i[AM , AN ]. By putting Aµ = aµ, Ay = φ

and dropping the y-dependence, this theory is dimensionally reduced to Yang Mills with a

Higgs field φ on Rp:

Sp =
1

g2
p

∫

dpx Tr

(
1

4
fµνfµν +

1

2
DµφDµφ

)

, (2.2)

where fµν = ∂µaν − ∂νaµ − i[aµ, aν ], Dµφ = ∂µφ − i[aµ, φ] and g2
p = 1

2πRg2
p+1. Here, we

adopt U(N ×∞) as the gauge group of Sp. Namely, the fields in Sp are hermitian matrices

consisting of infinitely many blocks, each of which is an N ×N matrix. We label the blocks

by (s, t), where s, t run from −∞ to ∞. Then, Sp is expressed in terms of the blocks as

1Throughout this paper, we consider gauge theories on Riemannian manifolds with a positive-definite

metric. In the following arguments, we can easily add the time direction as direct product. To be precise,

the ‘vacua’ in this paper mean the classical vacua of the corresponding gauge theories on this direct product

space.

– 2 –



J
H
E
P
0
5
(
2
0
0
7
)
0
1
4

follows:

Sp =
1

g2
p

∫

dpx
∑

s,t

tr

(
1

4
f (s,t)

µν f (t,s)
µν +

1

2
(Dµφ)(s,t)(Dµφ)(t,s)

)

, (2.3)

where tr stands for the trace over the N × N matrix.

We make an S1 compactification with the radius R̃ in the φ direction by imposing the

following conditions on the fields:

UaµU † = aµ,

UφU † = φ + 2πR̃1N×∞, (2.4)

where U is the ‘shift’ matrix with infinite size,

U =















. . .
. . .

0N 1N

0N 1N

0N 1N

0N
. . .
. . .















. (2.5)

These conditions are expressed in terms of the block components as

a(s+1,t+1)
µ = a(s,t)

µ ,

φ(s+1,t+1) = φ(s,t) + 2πR̃δst1N . (2.6)

They can be solved as

aµ = âµ + ãµ, φ = φ̂ + φ̃ (2.7)

with

âµ = 0, φ̂ = 2πR̃ diag(. . . , s − 1, s, s + 1, . . .) ⊗ 1N (φ̂(s,t) = 2πR̃sδst) (2.8)

and

ã(s,t)
µ = ã(s−t)

µ , φ̃(s,t) = φ̃(s−t). (2.9)

The background (2.8) is a vacuum of (2.2). The fluctuations around the vacuum, ã
(s,t)
µ and

φ̃(s,t), depend only on s− t as indicated in (2.9), which represents a periodicity. The above

procedure should be called orbifolding.

By making the Fourier transformation, which turns out to be interpreted as the T-

duality, one can recover pure Yang Mills on Rp ×S1, where the radius of the original S1 is

R. The fields on Rp × S1 are defined in terms of the fields on Rp as

Aµ(x, y) =
∑

w

ã(w)
µ (x)e−

i
R

wy,

Ay(x, y) =
∑

w

φ̃(w)(x)e−
i
R

wy. (2.10)
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The radius of the original S1, R, is related to the radius of the dual S1, R̃, as

R =
1

2πR̃
. (2.11)

Then, the block components in (2.3) are evaluated as

(Dµφ(x))(s,t) =∂µφ̃(s−t)(x) + i2πR̃(s − t)ã(s−t)
µ (x)

− i
∑

u

(ã(s−u)
µ (x)φ̃(u−t)(x) − φ̃(s−u)(x)ã(u−t)

µ (x))

=
1

2πR

∫ 2πR

0
dyFµy(x, y)e

i
R

(s−t)y,

f (s,t)
µν (x) =

1

2πR

∫ 2πR

0
dyFµν(x, y)e

i
R

(s−t)y. (2.12)

Substituting (2.12) into (2.3) yields

Sp =
1

g2
p

1

2πR

∑

w

∫

dp+1z
1

4
tr(FMNFMN ). (2.13)

By dividing the above expression by the overall factor
∑

w, which gives an infinite constant,

one indeed reproduces the original pure Yang Mills on Rp ×S1 (2.1) with the gauge group

U(N).

In the context of the D-brane effective theories, the above procedure is interpreted as

the T-duality between Dp-brane and D(p−1)-brane, although the 9−p Higgs fields and the

fermions are omitted here for simplicity. The background (2.8) represents an infinite array

of stacks of N coincident D(p − 1)-branes, where ‘s’ labels the s-th stack. The distance

between the neighboring stacks is 2πR̃. (2.9) expresses the periodicity which produces the

dual S1 with the radius R̃. ã
(w)
µ and φ̃(w) represent an open string stretched between

the s-th stack and the (s + w)-th stack, so that −w corresponds to the winding number

around the dual S1. In (2.10), the winding number −w is reinterpreted as the momentum

−w/R along the original S1 with the radius R. The relation between the radii (2.11) is

the same as that for the T-duality in string theory. Dividing (2.13) by the overall factor
∑

w corresponds to extracting a single period. In this way, the effective theory for a stack

of N coincident Dp-branes is obtained through the T-duality.

3. Consistent truncation and T-duality

In the previous section, we reviewed the T-duality for gauge theory in a standard way.

In this section, we present a new viewpoint concerning the consistent truncation and the

T-duality.

Let the gauge group in (2.1) be U(M). We consider a pure-gauge background,

Âµ = 0 = −i∂µV V †,

Ây =
1

R
diag(. . . , ns−1, . . . , ns−1

︸ ︷︷ ︸

Ns−1

, ns, . . . , ns
︸ ︷︷ ︸

Ns

, ns+1, . . . , ns+1
︸ ︷︷ ︸

Ns+1

, . . .) = −i∂yV V †, (3.1)
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with

V = diag(. . . , e
i
R

ns−1y, . . . , e
i
R

ns−1y

︸ ︷︷ ︸

Ns−1

, e
i
R

nsy, . . . , e
i
R

nsy

︸ ︷︷ ︸

Ns

, e
i
R

ns+1y, . . . , e
i
R

ns+1y

︸ ︷︷ ︸

Ns+1

, . . .), (3.2)

where M = . . .+Ns−1 +Ns +Ns+1 + . . .. Due to the single-valuedness of V , all ns must be

integers. We assume that all ns are different. This background naturally induces a block

structure for M × M matrices. We label the blocks by (s, t), where the (s, t) block is an

Ns × Nt matrix.

We denote the fluctuations of AM around the background (3.1) by ÃM , while we

continue to use AM for the fields around the trivial background AM = 0. Since the

background (3.1) is gauge-equivalent to the trivial background, we have a relation

AM = −i∂MV †V + V †(ÂM + ÃM )V, (3.3)

which is equivalent to

AM = V †ÃMV. (3.4)

For the (s, t) block, (3.4) implies

A
(s,t)
M = e−

i
R

(ns−nt)yÃ
(s,t)
M . (3.5)

We make the Fourier expansions for A
(s,t)
M and Ã

(s,t)
M with respect to the y direction as

A
(s,t)
M (x, y) =

∑

m

A
(s,t)
M,m(x)e

i
R

my,

Ã
(s,t)
M (x, y) =

∑

m

Ã
(s,t)
M,m(x)e

i
R

my. (3.6)

From (3.5), we obtain a relation between the Kaluza-Klein (KK) modes,

A
(s,t)
M,m−(ns−nt)

(x) = Ã
(s,t)
M,m(x). (3.7)

The theory around the trivial background of (2.1) is written in terms of A
(s,t)
M,m while the

theory around the background (3.1) of (2.1) in terms of Ã
(s,t)
M,m. The two theories are

equivalent under the identification (3.7). The trivial background AM = 0 corresponds to

the trivial vacuum of the theory. Due to the variety of the choices of ns and Ns, we have

many different representations of the theory around the trivial vacuum.

In the usual KK reduction, one keeps only A
(s,t)
M,0 in the theory around the trivial back-

ground of (2.1). This is a consistent truncation, because the momentum ‘m’ is conserved,

and one obtains the theory around the trivial vacuum aµ = 0, φ = 0 of (2.2). Similarly, one

can keep only Ã
(s,t)
M,0 in the theory around the background (3.1) of (2.1) to truncate (2.1)

consistently. It is seen from (3.1) that the resulting theory is the theory around a vacuum

of (2.2) given by

âµ = 0, φ̂ = 2πR̃diag(. . . , ns−1, . . . , ns−1
︸ ︷︷ ︸

Ns−1

, ns, . . . , ns
︸ ︷︷ ︸

Ns

, ns+1, . . . , ns+1
︸ ︷︷ ︸

Ns+1

, . . .). (3.8)
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In this theory, Ã
(s,t)
µ,0 and Ã

(s,t)
y,0 are identified with ã

(s,t)
µ and φ̃(s,t), respectively. This theory

is no longer equivalent to the theory around the trivial vacuum of (2.2), although these

two theories originate from the same theory. In other words, we can obtain many different

theories by consistently truncating the original theory in different ways. Indeed, (3.7) tells

us that keeping only A
(s,t)
M,−(ns−nt)

in the theory around the trivial background of (2.1) yields

the theory around the vacuum (3.8) of (2.2). That this is a consistent truncation can also

be understood from the fact that the sum of the charge ‘ns − nt’ and the momentum ‘m’

is conserved because so is each of them. Note that in the theory around the vacuum (3.8)

of (2.2) the gauge symmetry U(M) is spontaneously broken to . . . × U(Ns−1) × U(Ns) ×
U(Ns+1) × . . ..

By using the above discussions, we can easily show in an alternative way the T-duality

reviewed in the previous section. Let us consider the case in which M = N × ∞, s runs

from −∞ to ∞, Ns = N for all s and ns = s. In this case, the vacuum (3.8) is nothing

but the vacuum (2.8) considered in the previous section. In the theory around the trivial

background of (2.1), we impose the constraint

A
(s,t)
M,m = A

(s−t)
M,m , (3.9)

and keep only A
(s−t)
M,−(s−t). The summations over the block indices s, t, . . . are identified with

the summations over the momenta. From the momentum conservation, we have the overall

factor
∑

w. Thus we obtain the theory around the trivial vacuum of U(N) Yang Mills on

Rp × S1 with the overall factor
∑

w, where A
(−m)
M,m is identified with the KK mode AM,m

of the U(N) theory. We see, therefore, from the discussion in the previous paragraph that

the theory around the vacuum (2.8) of (2.2) with the periodicity condition (2.9) imposed

is equivalent to the theory around the trivial vacuum of (2.1) with the gauge group U(N)

and the overall factor
∑

w. This is indeed the T-duality reviewed in the previous section.

4. Dimensional reduction from total space to base space

In this section, we perform a dimensional reduction from the total space of a principal

S1 bundle to its base space. We consider a principal S1 bundle whose total space is a

(D+1)-dimensional manifold P and whose base space is a D-dimensional manifold B. The

projection is given by π : P → B. The base space B has a covering {U[I]} (I = 1, 2, . . .),

each element of which is parameterized by xµ
[I] (µ = 1, . . . ,D). The total space P has

a covering {π−1(U[I])}. π−1(U[I]) is diffeomorphic to U[I] × S1 by the local trivialization,

so that it is parameterized by zM
[I] = (xµ

[I], y[I]) (M = 1, . . . ,D + 1), where y[I] = zD+1
[I]

parameterizes the S1 and 0 ≤ y[I] < 2πR. If there is overlap between U[I] and U[I′], the

relation between y[I] and y[I′] is determined by the transition function e
− i

R
v
[II′] as y[I′] =

y[I] − v[II′](x[I]). In the following, we add a subscript or superscript [I] to quantities which

are evaluated on U[I]. Quantities without such a subscript or superscript are independent

of which patch is used to evaluate them.

We assume that the total space possesses the U(1) isometry in the fiber direction and

the size of the fiber, namely the radius of S1, is constant. The metrics that satisfy such

– 6 –
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conditions generally take the form on π−1(U[I])

ds2
D+1 = G[I]

MNdzM
[I] dzN

[I] = g[I]
µν(x[I])dxµ

[I]dxν
[I] + (dy[I] + b[I]

µ (x[I])dxµ
[I])

2, (4.1)

where b[I] = b[I]
µ dxµ

[I] must be transformed as b[I′] = b[I] + dv[II′]. From this metric, one can

define a connection 1-form on the principal bundle as follows. First, note that connection

1-forms in general take the form

ω =
1

R
(dy[I] + t[I]

µ (x[I])dxµ
[I]), (4.2)

where t[I] must be transformed as t[I
′] = t[I] + dv[II′]. Second, we introduce an orthonormal

basis for the tangent space of the total space, EA (A = 1, . . . ,D + 1), such that the

direction of ED+1 coincides with the fiber direction. Explicitly, the elements of EA are

given by

E[I]µ
α = e[I]µ

α ,

E[I]y
α = −e[I]ν

α b[I]
ν = −b[I]

α ,

E[I]µ
D+1 = 0,

E[I]y
D+1 = 1, (4.3)

where α = 1, . . . ,D and e[I]µ
α is determined from g[I]µν = e[I]µ

α e[I]ν
α . Eα span the subspace

orthogonal to the fiber direction. Then, ω is determined from the condition ω(Eα) = 0 for

all α as

ω =
1

R
(dy[I] + b[I]). (4.4)

The orthonormal basis EA of the cotangent space dual to (4.3) is given by

E[I]α
µ = e[I]α

µ ,

E[I]α
y = 0,

E[I]D+1
µ = b[I]

µ ,

E[I]D+1
y = 1, (4.5)

which are identified with the vielbeins of the total space. The indices ‘A’ are the local

Lorentz indices for the total space. One can identify the space spanned by Eα, in which

the inner product is given by G in (4.1), with the tangent space of the base space with

the same inner product. Then, it follows from (4.5) that e[I]α
µ are the vielbeins of the D-

dimensional base space, namely g[I]
µν are the metric of the base space and α are the local

Lorentz indices for the base space. Note that 1
Rb[I]

µ gives a connection 1-form of the vector

bundle associated with the principal bundle. The spin connections, Ω B
A C = E[I]M

A Ω[I]B
M C ,

are determined from (4.5) as

Ω β
α γ = ω β

α γ ,

Ω β
α D+1 =

1

2
bαβ ,

Ω α
D+1 β =

1

2
bβα,

Ω α
D+1 D+1 = 0, (4.6)
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where ω β
α γ are the spin connections on the base space evaluated from e[I]α

µ , and bαβ =

∇αb[I]

β −∇βb[I]
α .

We start with pure Yang Mills on the (D + 1)-dimensional total space:

SD+1 =
1

g2
D+1

∫

dD+1z
√

G
1

4
Tr(FABFAB), (4.7)

where dD+1z
√

G represents the invariant volume. We dimensionally reduce this theory to

Yang Mills with a Higgs field on the D-dimensional base space. Since we decomposed the

(co)tangent space of the total space into the fiber direction and the directions orthogonal

to it in (4.3) and (4.5), we naturally relate the gauge fields AA on the total space to the

gauge fields aα and the Higgs field φ on the base space as follows:

Aα = aα,

AD+1 = φ, (4.8)

where we assume that the both sides in (4.8) are independent of y[I]. By using (4.6), we

evaluate the field strength on the total space as

Fαβ = fαβ + bαβ,

FαD+1 = Dαφ, (4.9)

where fαβ = ∇αaβ −∇βaα − i[aα, aβ].

By using (4.9) and
√

G[I] =
√

g[I], we obtain from (4.7) Yang Mills with the Higgs field

φ on the base space:2

SD =
1

g2
D

∫

dDx
√

g Tr

(
1

4
(fαβ + bαβφ)(fαβ + bαβφ) +

1

2
DαφDαφ

)

, (4.10)

where g2
D = 1

2πRg2
D+1. Note that there appears the U(1) curvature bαβ in (4.10)

5. T-duality on fiber bundle

The discussion on the consistent truncation of Yang Mills on the total space of the principal

S1 bundle proceeds parallel to that of Yang Mills on Rp × S1 in section 3. By using the

discussion, we can show the T-duality between the gauge theories on the total space and

on the base space. As before, let the gauge group in (4.7) be U(M). We consider a gauge

transformation which is an analogue of V in (3.2). Such a gauge transformation should be

defined locally on each patch. It is given on π−1(U[I]) by

V[I] = (5.1)

diag(. . . , e
i
R

ns−1y[I] , . . . , e
i
R

ns−1y[I]

︸ ︷︷ ︸

Ns−1

, e
i
R

nsy[I], . . . , e
i
R

nsy[I]

︸ ︷︷ ︸

Ns

, e
i
R

ns+1y[I], . . . , e
i
R

ns+1y[I]

︸ ︷︷ ︸

Ns+1

, . . .),

2This action is formally the same as that derived in [21], where the compactification of gravitational

and Yang Mills system from a direct product space-time M × S
1 to M is considered, and bα represents

fluctuation of the metric on M × S
1.
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where M = . . .+Ns−1 +Ns +Ns+1 + . . .. Here all ns are different and must be integers due

to the single-valuedness of V[I]. From (5.1), we can evaluate the pure-gauge background on

π−1(U[I]) as

Â[I]
α = −iE[I]M

α

∂V[I]

∂zM
[I]

V †
[I]

= − 1

R
b[I]
α diag(. . . , ns−1, . . . , ns−1

︸ ︷︷ ︸

Ns−1

, ns, . . . , ns
︸ ︷︷ ︸

Ns

, ns+1, . . . , ns+1
︸ ︷︷ ︸

Ns+1

, . . .),

ÂD+1 = −iE[I]M
D+1

∂V[I]

∂zM
[I]

V †
[I]

=
1

R
diag(. . . , ns−1, . . . , ns−1

︸ ︷︷ ︸

Ns−1

, ns, . . . , ns
︸ ︷︷ ︸

Ns

, ns+1, . . . , ns+1
︸ ︷︷ ︸

Ns+1

, . . .). (5.2)

Note that Â[I]
α is patch-dependent as b[I]

α does. This patch-dependence originates from

considering a particular background. If there is overlap between U[I] and U[I′], Â[I]
α is

gauge-transformed to Â[I′]
α by

V[II′] = V[I′]V
†
[I] (5.3)

= diag(. . . , e
− i

R
ns−1v

[II′] , . . . , e
− i

R
ns−1v

[II′]

︸ ︷︷ ︸

Ns−1

, e
− i

R
nsv

[II′] , . . . , e
− i

R
nsv

[II′]

︸ ︷︷ ︸

Ns

,

e
− i

R
ns+1v

[II′] , . . . , e
− i

R
ns+1v

[II′]

︸ ︷︷ ︸

Ns+1

, . . .).

while ÂD+1 is invariant. e
− i

R
v
[II′] is nothing but the transition function between U[I] and

U[I′], so that V[II′] is well-defined. The background (5.2) is gauge-equivalent to the trivial

background AA = 0, which corresponds to the trivial vacuum of the theory.

As in section 3, we denote the fluctuations on π−1(U[I]) around the background (5.2)

by Ã[I]

A , while we continue to use AA for the gauge fields around the trivial background

AA = 0, which are patch-independent. The background (5.2) is gauge-transformed to the

trivial background by V †
[I], so that as in (3.5) we have

A
(s,t)
A = e−

i
R

(ns−nt)y[I]Ã
[I](s,t)
A . (5.4)

We also see from (5.3)

Ã
[I′](s,t)
A = e

− i
R

(ns−nt)v[II′]Ã
[I](s,t)
A . (5.5)

We can make the Fourier transformations locally on each patch with respect to y[I].

On π−1(U[I]), A
(s,t)
A and Ã

[I](s,t)
A are expanded as

A
(s,t)
A (x[I], y[I]) =

∑

m

A
[I](s,t)
A,m (x[I])e

i
R

my[I] ,

Ã
[I](s,t)
A (x[I], y[I]) =

∑

m

Ã
[I](s,t)
A,m (x[I])e

i
R

my[I] . (5.6)
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From these equalities, we easily see that

A
[I′](s,t)
A,m (x[I′]) = e

i
R

mv
[II′]A

[I](s,t)
A,m (x[I]),

Ã
[I′](s,t)
A,m (x[I′]) = e

i
R

(m−(ns−nt))v[II′ ]Ã
[I](s,t)
A,m (x[I]). (5.7)

The relation (5.4) is translated to the relation between the KK modes:

A
[I](s,t)
A,m−(ns−nt)

= Ã
[I](s,t)
A,m . (5.8)

This is of course consistent with (5.7). The theory around the trivial background of (4.7)

is equivalent to the theory around the background (5.2) of (4.7) under the identification of

the KK modes (5.8).

As in the Rp×S1 case, different consistent truncations of the theory around the trivial

vacuum of (4.7) give rise to different theories on the base space. The U(1) isometry indeed

ensures that the following truncations are consistent ones. Keeping only A
[I](s,t)
A,0 in the the-

ory around the trivial background of (4.7) generates the theory around the trivial vacuum

aα = 0, φ = 0 of (4.10). Keeping only Ã
[I](s,t)
A,0 in the theory around the background (5.2)

is equivalent to keeping only A
[I](s,t)
A,−(ns−nt)

in the theory around the trivial background, and

generates the theory around a nontrivial background of (4.10), which we will discuss shortly.

By taking M = N ×∞, Ns = N and ns = s and imposing the periodicity A
(s,t)
A = A

(s−t)
A ,

the T-duality between the theories on the total space and on the base space is achieved in

the same way as the Rp × S1 case.

It is seen from (4.8) and (5.2) that keeping only A
[I](s,t)
A,−(ns−nt)

results in the theory

around a background of (4.10),

â[I]
α = −b[I]

α φ̂,

φ̂ = 2πR̃ diag(. . . , ns−1, . . . , ns−1
︸ ︷︷ ︸

Ns−1

, ns, . . . , ns
︸ ︷︷ ︸

Ns

, ns+1, . . . , ns+1
︸ ︷︷ ︸

Ns+1

, . . .), (5.9)

where R̃ = 1
2πR . It is remarkable that the gauge fields take the monopole-like config-

uration described by b[I]
α . We discuss the quantization of the fluxes in section 6. The

background (5.9) would correspond to a vacuum of (4.10), because the background (5.2)

corresponds to a vacuum of (4.7). Indeed it satisfies the equations

f̂αβ + bαβ φ̂ = 0,

eµ
α∂µφ̂ − i[âα, φ̂] = 0, (5.10)

which give the conditions for the vacua.

If there is overlap between U[I] and U[I′], the gauge fields and the Higgs field in U[I]

and U[I′] are related by the gauge transformation

â[I′]
α = −ie[I]µ

α ∂[I]
µ V[II′]V

†
[II′]

+ V[II′]â
[I]
α V †

[II′]
,

φ̂ = V[II′]φ̂V †
[II′]

. (5.11)
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We denote the (s, t) block of fluctuations around (5.9) on U[I] by ã
[I](s,t)
α and φ̃[I](s,t), which

are identified with Ã
[I](s,t)
α,0 = A

[I](s,t)
α,−(ns−nt)

and Ã
[I](s,t)
D+1,0 = A

[I](s,t)
D+1,−(ns−nt)

, respectively. The

fluctuations are gauge-transformed from U[I] to U[I′] as

ã[I′](s,t)
α = e

− i
R

(ns−nt)v[II′] ã[I](s,t)
α ,

φ̃[I′](s,t) = e
− i

R
(ns−nt)v[II′] φ̃[I](s,t). (5.12)

For completeness, we state explicitly the T-duality in this case: the theory around (5.9)

of (4.10) with M = N ×∞, Ns = N , ns = s and the periodicity condition ã
[I](s,t)
α = ã

[I](s−t)
α

and φ̃[I](s,t) = φ̃[I](s−t) is equivalent to the theory around the trivial vacuum of (4.7) with

the gauge group U(N) and the overall factor
∑

w. The relation between the fields on the

total space and on the base space is given by

Aα(x[I], y[I]) =
∑

w

ã[I](w)
α (x[I])e

− i
R

wy[I],

AD+1(x[I], y[I]) =
∑

w

φ̃[I](w)(x[I])e
− i

R
wy[I]. (5.13)

In order that the fields in the lefthand sides in (5.13) are the ones around the trivial vacuum

of (4.7), they must be patch-independent. It is seen from (5.12) they are indeed patch-

independent. Interestingly, the monopole-like charges are identified with the momenta.

It is indeed easy to check explicitly that the Fourier transformation (5.13) realizes the

T-duality, as we did in section 2.

6. Nontrivial vacua on total space

So far we have been concerned with the theory around the trivial vacuum on the total

space. In general, there are nontrivial vacua on the total space. In this section, we discuss

the nontrivial vacua on the total space and their relation to the vacua on the base space.

First, we classify the vacua on the total space. Let the gauge group of (4.7) be U(M).

The vacua of (4.7) are given by the space of the flat connections modulo the gauge transfor-

mations, which are parameterized by the holonomies (the Wilson lines) along the nontrivial

generators of the fundamental group. Let us consider the closed loop along the fiber S1.

The Wilson line along the loop for the flat connections is diagonalized as [22, 23]

W = P exp

(

i

∫ 2πR

0
dy[I]Ay(x[I], y[I])

)

= diag(e2πiθ(1)
, . . . , e2πiθ(1)

︸ ︷︷ ︸

M (1)

, . . . , e2πiθ(T )
, . . . , e2πiθ(T )

︸ ︷︷ ︸

M (T )

), (6.1)

where M = M (1) + . . .+M (T ), and all θ(a) are constants different each other and satisfying

0 ≤ θ(a) < 1. If the loop is contractable, W = 1M , namely T = 1 and θ(1) = 0. In the case

of the nontrivial fiber bundles, θ(a) are in general discretized, as we will see shortly. One

can take a gauge in which Ay is diagonal and constant:

Ây =
1

R
diag(θ(1), . . . , θ(1)

︸ ︷︷ ︸

M (1)

, . . . , θ(T ), . . . , θ(T )

︸ ︷︷ ︸

M (T )

), (6.2)
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which gives (6.1). By solving the flatness condition F [I]
µy = 0, one finds that A[I]

µ must have

the same block structure as Ây and be y[I]-independent:

Â[I]
µ (x[I]) =







Â
[I](1)
µ (x[I])

. . .

Â
[I](T )
µ (x[I])







, (6.3)

where the diagonal block component, Â
[I](a)
µ , is an M (a) × M (a) matrix and all the off-

diagonal block components vanish. Â
[I](a)
µ are determined by the flatness condition F [I]

µν = 0,

up to the gauge transformations that are elements of U(M (1)) × . . . × U(M (T )) and y[I]-

independent. The vacua on the total space are parameterized by M (a), θ(a) and Â
[I](a)
µ

modulo the gauge transformations.

Next, we examine the relation between the vacua on the total space and the base

space. Each vacuum of (4.10) is lifted up to a vacuum of (4.7). On the other hand, the

configurations given by (6.2) and (6.3) are y[I]-independent, so that they correspond to the

vacua on the base space. This implies that the map from the space of the vacua on the

base space to those on the total space is surjective. However, it is not injective. Suppose

that Â
[I](a)
µ can be block-diagonalized as

Â[I](a)
µ =












. . .

Â
[I](a;s−1)
µ

Â
[I](a;s)
µ

Â
[I](a;s+1)
µ

. . .












, (6.4)

where Â
[I](a;s)
µ is an N

(a)
s ×N

(a)
s matrix and M (a) = . . . + N

(a)
s−1 + N

(a)
s + N

(a)
s+1 + . . .. Then,

by applying the gauge transformation of the type V[I], one can shift (θ(a), . . . , θ(a)) in Ây as

(θ(a), . . . , θ(a)

︸ ︷︷ ︸

M (a)

) → (θ(a), . . . , θ(a)

︸ ︷︷ ︸

M (a)

) (6.5)

+(. . . , n
(a)
s−1, . . . , n

(a)
s−1

︸ ︷︷ ︸

N
(a)
s−1

, n(a)
s , . . . , n(a)

s
︸ ︷︷ ︸

N
(a)
s

, n
(a)
s+1, . . . , n

(a)
s+1

︸ ︷︷ ︸

N
(a)
s+1

, . . .),

where n
(a)
s can be different. We denote this shifted Ây by Â′

y. The gauge-transformed

configuration described by Â′
y represents the same vacuum on the total space as the original

configuration described by Ây. As in the case of the trivial vacuum on the total space, due

to the variety of the choices of n
(a)
s , one can consistently truncate the theory around the

vacuum of (4.7) described by (6.2) and (6.3) in different ways to obtain different theories

on the base space. Those theories on the base space are the ones around the vacua of (4.10)

given by

â[I](a;s)
α = − 1

R
(θ(a) + n(a)

s )b[I]
α 1

N
(a)
s

+ e[I]µ
α Â[I](a;s)

µ ,

φ̂ = Â′
y. (6.6)
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Indeed, a general solution to the vacuum condition (5.10) takes this form in the gauge in

which φ is diagonal. It is seen from the first equation in (5.10) that e[I]µ
α Â

[I](a;s)
µ gives a

flat connection on the base space. It is easy to see that the T-duality also holds for the

theories around the nontrivial vacua on the total space. In fact, by making s in each block

run from −∞ to ∞, taking N
(a)
s = N (a), M (a) = N (a) ×∞ and n

(a)
s = s and imposing the

periodicity condition on the fluctuations around (6.6), one obtains the theory around the

vacuum of (4.7) described by (6.2) and (6.3) with M (a) replaced by N (a).

Finally, we comment on the quantization of the fluxes. For the vacua (6.6), the first

equation in (5.10) implies

f̂
(a;s)
αβ = − 1

R
(θ(a) + n(a)

s )bαβ1N
(a)
s

(6.7)

The 1st Chern class evaluated from both sides of (6.7) is an element of the 2nd cohomology

class with the integer coefficients of the base manifold, H2(B,Z). If the fiber bundle

is nontrivial, the curvature of the principal S1 bundle, 1
Rbαβ , is a nontrivial element of

H2(B,Z) so that we have a relation p(θ(a) + n
(a)
s ) ∈ Z with a certain p ∈ Z+. This is the

quantization of the fluxes. From this relation, we can deduce

θ(a) =
l(a)

p
, (6.8)

where l(a) are integers satisfying 0 ≤ l(a) ≤ p − 1. If the fiber bundle is trivial, the

curvature is a unit element of H2(B,Z) so that we have no relation for θ(a) + n
(a)
s . There

is no quantization of the fluxes in this case, and θ(a) take continuous values. For example,

in U(M) Yang Mills on Rp × S1, the vacua are completely parameterized by M (a) and

θ(a) [22, 23]. Here θ(a) are continuous parameters and Âµ = 0. The value of p should also

be determined from the structure of the fundamental group on the total space, because

the vacua on the total space are given by the space of the flat connections modulo the

gauge transformations and the flat connections are classified by the holonomies that are a

representation of the fundamental group. One can see in the next section that this is indeed

the case in some examples. Note that in the Rp × S1 case, π1(R
p × S1) = π1(S

1) = Z so

that there is no quantization of θ(a).

7. Examples

In this section, we present some examples of the T-duality for gauge theory on curved space

described as a principal S1 bundle. In sections 3.1, 3.2 and 3.3, we treat S3 and S3/Zk

as S1 on S2, S5 and S5/Zk as S1 on CP 2 and the Heisenberg nilmanifold as S1 on T 2,

respectively.

7.1 S3 and S3/Zk as S1 on S2

We consider S3 with radius 2 and regard it as the U(1) Hopf bundle on S2 with radius 1.

S3 with radius 2 is defined by

{(w1, w2) ∈ C2 | |w1|2 + |w2|2 = 4}. (7.1)
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The Hopf map π : S3 → CP 1 (S2) is defined by

(w1, w2) → [(w1, w2)] ≡ {λ(w1, w2)|λ ∈ C\{0}}. (7.2)

Two patches are introduced on CP 1: the patch 1 (w1 6= 0) and the patch 2 (w2 6= 0). On

the patch 1 the local trivialization is given by

(w1, w2) →
(

w2

w1
,

w1

|w1|

)

, (7.3)

where w2
w1

is the local coordinate of CP 1, while on the patch 2 the local trivialization is

given by

(w1, w2) →
(

w1

w2
,

w2

|w2|

)

, (7.4)

where w1
w2

is the local coordinate of CP 1.

The equation (7.1) is solved as

w1 = 2cos
θ

2
eiσ1 , w2 = 2 sin

θ

2
eiσ2 , (7.5)

where 0 ≤ θ ≤ π and 0 ≤ σ1, σ2 < 2π. We put

ϕ = σ1 − σ2, ψ = σ1 + σ2, (7.6)

and can change the ranges of ϕ and ψ to 0 ≤ ϕ < 2π and 0 ≤ ψ < 4π. The periodicity is

expressed as

(θ, ϕ, ψ) ∼ (θ, ϕ + 2π, ψ + 2π) ∼ (θ, ϕ, ψ + 4π). (7.7)

From the local trivializations (7.3) and (7.4), one can see that θ and φ are regarded as the

angular coordinates of the base space S2 through the stereographic projection. The patch

1 corresponds to 0 ≤ θ < π, while the patch 2 corresponds to 0 < θ ≤ π. The metric of S3

is given as follows:

ds2
S3 = |dw1|2 + |dw2|2

= dθ2 + sin2 θdφ2 + (dψ + cos θdϕ)2. (7.8)

The correspondence to the notation of section 4 is as follows:

zM
[1] = (θ, ϕ, ψ + ϕ), xµ

[1] = (θ, ϕ), y[1] = ψ + ϕ,

zM
[2] = (θ, ϕ, ψ − ϕ), xµ

[2] = (θ, ϕ), y[2] = ψ − ϕ,

b
[1]
θ = 0, b[1]

ϕ = cos θ − 1,

b
[2]
θ = 0, b[2]

ϕ = cos θ + 1,

R = 2. (7.9)
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The metric and the zweibeins of the base space S2 are given by

ds2
S2 = dθ2 + sin2 θdϕ2,

e1
θ = 1, e2

ϕ = sin θ. (7.10)

(4.10) takes the form

SS2 =
1

g2
S2

∫

dθdϕ sin θTr

(
1

2
(f12 − φ)2 +

1

2
(D1φ)2 +

1

2
(D2φ)2

)

. (7.11)

The vacua of (7.11) takes the form

â
[1],[2]
1 = 0,

â
[1]
2 = tan

θ

2
φ̂,

â
[2]
2 = − cot

θ

2
φ̂,

φ̂ =
1

2
diag(. . . , ni−1, ni, ni+1, . . .). (7.12)

The configuration of the i-th diagonal element of the gauge fields are the Dirac monopole

with the monopole charge ni/2. That ni are integers is consistent with Dirac’s quantization

condition. The vacuum of Yang Mills on S3 is unique due to π1(S
3) = 0. There are no

degrees of freedom corresponding to θ(a) and Â[I]
µ , and p = 1. The value of p is also

determined consistently by

W = P exp

(

i

∫ 4π

0
dy[I]Ây

)

= 1. (7.13)

The theories around all the vacua (7.12) originate from the theory around the trivial vacuum

on S3.

As shown in the previous section in general, there holds the T-duality between the

original U(N) Yang Mills on S3 and (7.11) with the gauge group U(N × ∞) and the

periodicity condition imposed.

The relationship between the gauge fields on S3 and the gauge fields and the Higgs

field on S2 is given in (5.13) with α = 1, 2.

The gauge fields on S3 are expanded in terms of the vector spherical harmonics on S3,

while the gauge fields and the Higgs field on S2 in this case are expanded together in terms

of the vector monopole harmonics [24, 25]. From (5.13), one can read off the relationship

between the spherical harmonics on S3 and the monopole harmonics, which was found

in [12, 10] to show the T-duality between N = 4 SYM on R × S3(/Zk) and 2+1 SYM on

R × S2.

The lens space S3/Zk (k ∈ Z+) is defined by introducing an identification, (w1, w2) ∼
(w1 e

2πi
k , w2 e

2πi
k ) into the definition of S3 and can also be regarded as S1 on S2. The local

trivialization on the patch 1 is

(w1, w2) →
(

w2

w1
,

(
w1

|w1|

)k
)

, (7.14)
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while the local trivialization on the patch 2 is

(w1, w2) →
(

w1

w2
,

(
w2

|w2|

)k
)

. (7.15)

The radius of the fiber is replaced with R = 2
k . The form of the action on the base space

is the same as (7.11). The counterpart of (7.12) is obtained by replacing φ̂ in (7.12) with

φ̂ = 1
2diag(. . . , βi−1 + kni−1, βi + kni, βi+1 + kni+1, . . .), where βi are integers and 0 ≤ βi ≤

k − 1. The values and the multiplicities of βi label the vacua on S3/Zk and correspond to

θ(a) and M (a), respectively. The vacua on S3/Zk are classified by the holonomy along the

generator of π1(S
3/Zk) = Zk, which can be evaluated from

W = P exp

(

i

∫ 4π/k

0
dy[I]Ây

)

. (7.16)

The value of p is determined by W k = 1 as p = k.

7.2 S5 and S5/Zk as S1 on CP 2

We regard S5 as a U(1) bundle on CP 2 as follows. S5 with the radius 1 is defined by

{(w1, w2, w3) ∈ C3 | |w1|2 + |w2|2 + |w3|2 = 1}. (7.17)

The Hopf map π : S5 → CP 2 is given by

(w1, w2, w3) → [(w1, w2, w3)] ≡ {λ(w1, w2, w3)|λ ∈ C\{0}}. (7.18)

Three patches are introduced on CP 2: the patch 1 (w1 6= 0), the patch 2 (w2 6= 0) and the

patch 3 (w3 6= 0). The fiber on the patch I given by the local trivialization is parameterized

by wI

|wI |
. (7.17) is solved as

w1 = cos χ eiτ ,

w2 = sin χ cos
θ

2
ei(τ+ ψ+ϕ

2
),

w3 = sin χ sin
θ

2
ei(τ+ ψ−ϕ

2
). (7.19)

where 0 ≤ τ < 2π, 0 ≤ χ ≤ π
2 , 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π and 0 ≤ ψ < 4π. The periodicity in

this case is given by

(χ, θ, ϕ, ψ, τ) ∼ (χ, θ, ϕ, ψ, τ + 2π) ∼ (χ, θ, ϕ, ψ + 4π, τ) ∼ (χ, θ, ϕ + 2π, ψ + 2π, τ)(7.20)

The metric of S5 is given by

ds2
S5 = |dw1|2 + |dw2|2 + |dw3|2

= ds2
CP 2 + ω2. (7.21)
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with

ds2
CP 2 = dχ2 +

1

4
sin2 χ(dθ2 + sin2 θdϕ2 + cos2 χ(dψ + cos θdϕ)2),

ω = dτ +
1

2
sin2 χ(dψ + cos θdϕ), (7.22)

where ds2
CP 2 is the metric of CP 2, which is called the Fubini-Study metric while ω is the

connection 1-form. The correspondence to the notation of section 4 is

zM
[1] = (χ, θ, ϕ, ψ, τ), xµ

[1] = (χ, θ, ϕ, ψ), y[1] = τ,

zM
[2] = (χ, θ, ϕ, ψ, τ +

1

2
(ψ + ϕ)), xµ

[2] = (χ, θ, ϕ, ψ), y[2] = τ +
1

2
(ψ + ϕ),

zM
[3] = (χ, θ, ϕ, ψ, τ +

1

2
(ψ − ϕ)), xµ

[3] = (χ, θ, ϕ, ψ), y[3] = τ +
1

2
(ψ − ϕ),

b[1],[2],[3]
χ = 0, b

[1],[2],[3]
θ = 0,

b[1]
ϕ =

1

2
sin2 χ cos θ, b

[1]
ψ =

1

2
sin2 χ,

b[2]
ϕ =

1

2
(sin2 χ cos θ − 1), b

[2]
ψ =

1

2
(sin2 χ − 1),

b[3]
ϕ =

1

2
(sin2 χ cos θ + 1), b

[3]
ψ =

1

2
(sin2 χ − 1),

R = 1. (7.23)

b[I]
µ in (7.23) is called the gravitational and electromagnetic instanton in [26]. The vacuum

on S5 is unique. The vacua on CP 2 are given by (5.9). The value of p is determined by

W = P exp
(

i
∫ 2π
0 dy[I]Ay

)

= 1 as p = 1.

The lens space S5/Zk is treated in the same way as S3/Zk.

7.3 Heisenberg nilmanifold as S1 on T 2

The Heisenberg nilmanifold [27, 28] is a twisted 3-torus that has the following periodicity

condition.

(x1, x2, y) ∼ (x1, x2 + L2, y) ∼ (x1, x2, y + Ly) ∼ (x1 + L1, x
2, y − κL1x

2), (7.24)

where x1, x2 and y are the coordinates of the nilmanifold, and κ is determined from

consistency of (7.24) as κ = l
Ly

L1L2
, (l ∈ Z). The metric of the nilmanifold is given by

ds2 = (dx1)2 + (dx2)2 + (dy + κx1dx2)2. (7.25)

We regard the nilmanifold as a U(1) bundle on T 2 parameterized by x1 and x2. We

need two patches on T 2 to describe the U(1) bundle. We define the patch 1 as the region

0 < x1
[1] < L1, and the patch 2 as the region −L1

2 < x1
[2] < L1

2 . On each patch, the

nilmanifold is locally trivialized such that it is parameterized by (x1
[1], x

2
[1], y[1]) on the

patch 1 and (x1
[2], x

2
[2], y[2]) on the patch 2, where (x1

[I], x
2
[I]) are the local coordinate of the

base manifold T 2 and y[I] parameterizes the S1 fiber direction. On the overlap between the

two patches, the transition functions are given as follows:

x1
[2] = x1

[1] , x2
[2] = x2

[1], y[2] = y[1], (7.26)
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in the region 0 < x1
[1] < L1

2 , 0 < x1
[2] < L1

2 , and

x1
[2] = x1

[1] − L1, x2
[2] = x2

[1], y[2] = y[1] − κL1x
2
[1], (7.27)

in the region L1
2 < x1

[1] < L1, −L1
2 < x1

[2] < 0. Note that this representation of the

nilmanifold in terms of the patches is equivalent to the definition in terms of the periodicity

condition (7.24).

The correspondence to the notation of section 4 is as follows:

b[I]

1 = 0, b[I]

2 = κx1
[I], I = 1, 2,

b12 = κ,

R =
Ly

2π
. (7.28)

b[I]
α represents the constant magnetic flux with the strength l on T 2. This implies p = l.

The value of p is also determined from the structure of the fundamental group of the

Heisenberg nilmanifold. As discussed in [27], W l equals the Wilson line along an element

of the commutator subgroup of the fundamental group. For the U(1) part of the a-th block

of the gauge fields, therefore, we have

(

P exp

(

i

∫ Ly

0
dy[I]Â

(a)
y

))l

= 1, (7.29)

from which p = l follows. In this case, e[I]µ
α Â

[I](a;s)
µ in (6.6) can give nontrivial Wilson lines

along the generators of the fundamental group of T 2 and contribute to the classification of

the vacua. (4.10) takes the form

S =
1

gT 2

∫

dx1dx2Tr

(
1

2
(f12 + κφ)2 +

1

2
(D1φ)2 +

1

2
(D2φ)2

)

. (7.30)

8. Conclusion and discussion

In this paper, we first discussed the variety of the consistent truncations from Yang Mills

on the total space to Yang Mills with the Higgs field on the base space in the trivial and

nontrivial principal S1 bundles. Different consistent truncations of the theory around a

vacuum of Yang Mills on the total space yield the theories around different nontrivial vacua

of Yang Mills with the Higgs field on the base space. In the case of the nontrivial S1 bundles,

the nontrivial vacua on the base space have monopole-like gauge configurations. By using

this viewpoint, we showed the T-duality between the theories on the total space and the

base space in the nontrivial bundle case as well as the trivial bundle case. The difference

between these two cases is that in the nontrivial bundle case, the vacuum configurations of

the gauge fields are the monopole-like ones and the Fourier transformation must be made

locally on each patch. It is remarkable that the monopole-like charges are identified with

the momenta on the total space. We also classified the vacua on the total space and their

relation to the vacua on the base space. The quantization of the monopole-like charges
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on the base space is understood from the structure of the fundamental group on the total

space.

It is easy to add adjoint matters to Yang Mills on the total space and to introduce

supersymmetry. In [10], we showed the T-duality between the theory around the trivial

vacuum of N = 4 SYM on R × S3/Zk and the theory around a vacuum of 2+1 SYM on

R × S2. Our results in this paper show that the T-duality also holds for the nontrivial

vacua of N = 4 SYM on R × S3/Zk.

In this paper, we restricted ourselves to principal U(1) bundles. Nonabelian general-

ization is important. Typical examples are S7 as S3 (SU(2)) on S4, SU(3) as U(2) on CP 2

and so on. In [10], we showed that the theory around each vacuum of Yang Mills with

the Higgs on S2 is equivalent to the theory around a vacuum described by fuzzy spheres

of a matrix model. This means that Yang Mills on S3 and S3/Zk is realized in the matrix

model. It is interesting to examine what condition is needed in order for a gauge theory on

a fiber bundle to be realized in a matrix model. Finally, we expect to apply our findings

to (flux) compactification in string theory.
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