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1. Introduction

Emergence of space-time is one of the key concepts in nonperturbative definition of super-
string or M-theory by matrix models [fl, fJ. This phenomenon in field theory was found
over two decades ago in the large N reduction of gauge theories [f—[], which states equiv-
alence under some conditions between a large N gauge theory and the matrix model that
is its dimensional reduction to a point. This equivalence originates from the fact that the
eigenvalues of matrices can be interpreted as momenta. This interpretation reappeared in
the T-duality between the low-energy effective theories for Dp-branes and for D(p — 1)-
branes [§, f]. More concretely, this T-duality tells that a U(N) gauge theory on RP x S!
is equivalent to the U(/N x co) gauge theory that is its dimensional reduction to RP if a
periodicity condition is imposed to the theory on RP.

The main purpose of this paper is to extend the T-duality for gauge theory to that
on curved space described as a nontrivial fiber bundle. The above mentioned T-duality is
concerning a trivial S* bundle, RP x S*. We restrict ourselves to principal S' bundles and
show the T-duality between the gauge theories on the total space and on the base space.
We also present a new viewpoint concerning the consistent truncation and the T-duality for



gauge theory. Furthermore, we discuss the properties of the vacua! on the total space and
the base space. In our previous publication [[L(] on the gauge/gravity correspondence for
the SU(2|4) symmetric theories [[]] (see also [[J—[[7]), we showed the T-duality between
N = 4 super Yang Mills (SYM) on R x S3(/Z;) and 2 +1 SYM on R x S?, which is
suggested from the gravity side. This is regarded as the T-duality on S3(/Z;), which is a
nontrivial S! fibration over S2. In this paper, we generalize this result. Our findings would
be useful for the study of describing curved space-time in matrix models [[§—P0] as well
as the study of curved D-branes.

This paper is organized as follows. In section 2, we review the T-duality for gauge
theory in a standard way. In section 3, we present a new viewpoint concerning the consistent
truncation and the T-duality for gauge theory. Although this viewpoint is not necessarily
needed for the proof of the T-duality on fiber bundle, it is interesting itself and indeed makes
the T-duality for gauge theory more plausible. In section 4, we consider a dimensional
reduction from the total space of a principal S' bundle to its base space. In section 5, we
show the T-duality between the gauge theories on the base space and the total space. In
section 6, we discuss the properties of the nontrivial vacua on the total space and the base
space. We classify the vacua on the total space and discuss their relation to the vacua
on the base space. In section 7, we present some examples: S3(/Zy), S°(/Z) and the
Heisenberg nilmanifold. Section 8 is devoted to conclusion and discussion.

2. Review of T-duality for gauge theory

In this section, we give a standard review of the T-duality between the gauge theories on
RP x S* and RP [§, fIl. We first consider pure Yang Mills on RP x S*:

1

1
Serl = - dP1s ZTT(FMNFMN)a (2-1)

Ip+1
where 2™ (M =1,...,p+1) are decomposed into (z*,y) (= 1,...,p), y parameterizes S
with the radius R and Fyyn = O AN —ONAm —i[An, An|. By putting A, = ay, Ay =¢
and dropping the y-dependence, this theory is dimensionally reduced to Yang Mills with a
Higgs field ¢ on RP:

1 1 1
5, =~ / P Tr <— Lo for + —Dﬂ¢Dﬂ¢> , (2.2)
9p 4 2
where fu, = 0ua, — Oya, — ilay, ay), Dyd = O, — ilay, @] and g2 = 271R912)+1' Here, we

adopt U(N x 00) as the gauge group of S),. Namely, the fields in S}, are hermitian matrices
consisting of infinitely many blocks, each of which is an N x N matrix. We label the blocks
by (s,t), where s, t run from —oo to co. Then, S, is expressed in terms of the blocks as

!Throughout this paper, we consider gauge theories on Riemannian manifolds with a positive-definite
metric. In the following arguments, we can easily add the time direction as direct product. To be precise,
the ‘vacua’ in this paper mean the classical vacua of the corresponding gauge theories on this direct product
space.



follows:
1 1 1
Sp= = [ @ Yu (Zf,ﬁi’t’fﬁ’ff) + 5<Du¢><8¢><Du¢>“’s>) , (23)
p s,t

where tr stands for the trace over the N x N matrix.
We make an S compactification with the radius R in the ¢ direction by imposing the
following conditions on the fields:

UaHUJr = ay,
UdUT = ¢+ 27 R1 N oo, (2.4)

where U is the ‘shift’ matrix with infinite size,

Oy 1N
Oy 1n
Oy 1n

Oy

These conditions are expressed in terms of the block components as
(s+1t+1) _ (s:t)

alf = aj , N

UL = 458 4 o Re 1. (2.6)

They can be solved as
ap=d,+auy, d=0¢+¢ (2.7)
with
a,=0, ¢=2rRdiag(...,s—1,5,5+1,...)01y (Y = 27Rsd) (2.8)
and

a£37t) — al/gsft)’

Fet) = Gle=t) (2.9)

The background (B-§) is a vacuum of (2.3). The fluctuations around the vacuum, dl(f’t) and
& depend only on s —t as indicated in (.9), which represents a periodicity. The above
procedure should be called orbifolding.

By making the Fourier transformation, which turns out to be interpreted as the T-

duality, one can recover pure Yang Mills on RP x S, where the radius of the original S! is
R. The fields on RP x S' are defined in terms of the fields on RP as

Aula,y) = Y ag (@)e 7,

Ayz,y) =Y 60 (@)e ww. (2.10)



The radius of the original Sl, R, is related to the radius of the dual Sl, R, as
1
R=—. (2.11)
2mR

Then, the block components in (2.J) are evaluated as

(D)) =0,00 ) () + i2w R(s — t)aly ™" (w)
— iY@ (@) (@) — S (@)l («))

u

2R i .
sz/ dyFy (x,y)e =0,
27T R i
W =5 [ Ao, (212)
Substituting (R.12) into (E) yields
p 2 27TR Z/dp+1z tr FMNFMN) (2.13)

By dividing the above expression by the overall factor ), , which gives an infinite constant,
one indeed reproduces the original pure Yang Mills on RP x S* (R.1)) with the gauge group
U(N).

In the context of the D-brane effective theories, the above procedure is interpreted as
the T-duality between Dp-brane and D(p—1)-brane, although the 9—p Higgs fields and the
fermions are omitted here for simplicity. The background (P.§) represents an infinite array
of stacks of N coincident D(p — 1)-branes, where ‘s’ labels the s-th stack. The distance
between the neighboring stacks is 27 R. (B-9) expresses the periodicity which produces the
dual S' with the radius R. &E}U) and ¢ represent an open string stretched between
the s-th stack and the (s + w)-th stack, so that —w corresponds to the winding number
around the dual S'. In (R.10), the winding number —w is reinterpreted as the momentum
—w/R along the original S' with the radius R. The relation between the radii (R.11]) is
the same as that for the T-duality in string theory. Dividing (R.13) by the overall factor
> . corresponds to extracting a single period. In this way, the effective theory for a stack
of N coincident Dp-branes is obtained through the T-duality.

3. Consistent truncation and T-duality

In the previous section, we reviewed the T-duality for gauge theory in a standard way.
In this section, we present a new viewpoint concerning the consistent truncation and the
T-duality.

Let the gauge group in (R.1]) be U(M). We consider a pure-gauge background,

y = Rdiag(. Mg Ty ey M1y Mgy e v ey Mgy Mgty e ey Mg ]y v ) = —iayVVT, (3.1)

Ns—l Ns Ns+1



with

3 3 i i i 3
V =diag(...,eR"-WY . eR" WY eRMY | eR"Y eRMsHWY [ eRMsHY )0 (3.2)

Ns—l Ns Ns+1

where M = ...+ Ng_1+ Ng+ Ngi1+.... Due to the single-valuedness of V', all ng must be
integers. We assume that all ng are different. This background naturally induces a block
structure for M x M matrices. We label the blocks by (s,t), where the (s,t) block is an
Ng x N; matrix.

We denote the fluctuations of Ay, around the background (B by Ay, while we
continue to use Aps for the fields around the trivial background Ap; = 0. Since the
background (B.1]) is gauge-equivalent to the trivial background, we have a relation

Ay = —idy VIV + VI(Ay + Ay)V, (3.3)
which is equivalent to
Ay = VA,V (3.4)
For the (s,t) block, (B.4) implies
At — = giremnoy flo), (3.5)
(s;t)

We make the Fourier expansions for Ag\‘j[’t) and A A/ with respect to the y direction as
A (w,y) = Y AN (@)er™,
AGD (@) = DAY (x)er™. (3.6)

From (B.H), we obtain a relation between the Kaluza-Klein (KK) modes,

Al (@) = 4570 (). (3.7)

Mm—(ns—n¢

The theory around the trivial background of (R.I]) is written in terms of Ag&’?n while the
theory around the background (B.1]) of (R.1)) in terms of flg\‘ztr)n The two theories are
equivalent under the identification (B.7). The trivial background Ay = 0 corresponds to
the trivial vacuum of the theory. Due to the variety of the choices of ng and Ny, we have
many different representations of the theory around the trivial vacuum.

In the usual KK reduction, one keeps only Ag‘ff’to) in the theory around the trivial back-
ground of (R.I]). This is a consistent truncation, because the momentum ‘m’ is conserved,
and one obtains the theory around the trivial vacuum a, = 0, ¢ = 0 of (B.2). Similarly, one
can keep only [lg\‘}’fg in the theory around the background (B.1)) of (R.1)) to truncate (R.1)

consistently. It is seen from (B.1]) that the resulting theory is the theory around a vacuum
of (.9) given by

A~

a, =0, b= OMRAIAG(. .. Mg 1, s g1, Mgy v v v s Mgy Mgy e e ey Tl 1y - - -)- (3.8)

Ns—l Ns Ns+1



In this theory, flfjg ) and fl?(i(’)t) are identified with d&s’t) and ¢! respectively. This theory
is no longer equivalent to the theory around the trivial vacuum of (2.9), although these
two theories originate from the same theory. In other words, we can obtain many different
theories by consistently truncating the original theory in different ways. Indeed, (B.7) tells
us that keeping only AS\‘Z’a(nrnt) in the theory around the trivial background of (R.1)) yields
the theory around the vacuum (B.§) of (B.9). That this is a consistent truncation can also
be understood from the fact that the sum of the charge ‘ny; — n;’ and the momentum ‘m’
is conserved because so is each of them. Note that in the theory around the vacuum (B.§)
of (£.9) the gauge symmetry U(M) is spontaneously broken to ... x U(Ns_1) x U(N) x
U(Ngq1) X ...

By using the above discussions, we can easily show in an alternative way the T-duality
reviewed in the previous section. Let us consider the case in which M = N X oo, s runs
from —oo to 0o, Ny = N for all s and ns = s. In this case, the vacuum (B.§) is nothing
but the vacuum (2.§) considered in the previous section. In the theory around the trivial
background of (R.1]), we impose the constraint

Ao = AN (3.9)
and keep only Ag\j_f)(s, " The summations over the block indices s,t, ... are identified with

the summations over the momenta. From the momentum conservation, we have the overall
factor »,,. Thus we obtain the theory around the trivial vacuum of U(N) Yang Mills on
RP x S with the overall factor > > Where AS\ZZL) is identified with the KK mode Ay,
of the U(N) theory. We see, therefore, from the discussion in the previous paragraph that
the theory around the vacuum (R.§) of (B.9) with the periodicity condition (P.9) imposed
is equivalent to the theory around the trivial vacuum of (R.1)) with the gauge group U(N)
and the overall factor ) . This is indeed the T-duality reviewed in the previous section.

4. Dimensional reduction from total space to base space

In this section, we perform a dimensional reduction from the total space of a principal
S! bundle to its base space. We consider a principal S' bundle whose total space is a
(D +1)-dimensional manifold P and whose base space is a D-dimensional manifold B. The
projection is given by m : P — B. The base space B has a covering {Uy} (I =1,2,...),
each element of which is parameterized by xfﬁ] (w =1,...,D). The total space P has
a covering {7~ 1(Uy)}. 7 1(Uy) is diffeomorphic to Uy x St by the local trivialization,
so that it is parameterized by z[]}/][ = (¢{,ym) (M =1,...,D+ 1), where y;; = z[l?]“
parameterizes the S' and 0 < Yy < 2mR. If there is overlap between U and Uy, the
relation between y; and y;; is determined by the transition function ¢RI ag Y =
Yy — Vi (@) In the following, we add a subscript or superscript [I] to quantities which
are evaluated on Up;. Quantities without such a subscript or superscript are independent
of which patch is used to evaluate them.

We assume that the total space possesses the U(1) isometry in the fiber direction and
the size of the fiber, namely the radius of S', is constant. The metrics that satisfy such



conditions generally take the form on 71 (Upy)

ds%_H = G[]‘I)INdz[])/][dz[]X = g;[ﬁ,(:cm)dxﬁ]dxﬁ] + (dy + b%l(x[l])dxﬁ,])Q, (4.1)

where bl = bg]dmﬁ] must be transformed as b7 = pi2 + dvypy. From this metric, one can
define a connection 1-form on the principal bundle as follows. First, note that connection
1-forms in general take the form

1
"R
where ¢! must be transformed as t/') = ¢l + dvy; . Second, we introduce an orthonormal
basis for the tangent space of the total space, E4 (A = 1,...,D + 1), such that the
direction of Epy; coincides with the fiber direction. Explicitly, the elements of E4 are

w (dy + ) () dafyy), (4.2)

given by

Eg]“ - eg“‘,

B = el = b,

E%]iﬁ =0,

ERY =1, (4.3)
where o = 1,...,D and e is determined from g/ = ei*el”. E, span the subspace

orthogonal to the fiber direction. Then, w is determined from the condition w(E,) = 0 for
all a as

1
w = = (dyy + b7, (1.4)
R
The orthonormal basis E4 of the cotangent space dual to (f.J) is given by

Ellla _ lna
o

H, )
EL”O‘ =0,
ID+1 __ g1
E, =b,,
EPT =1, (4.5)

which are identified with the vielbeins of the total space. The indices ‘A’ are the local
Lorentz indices for the total space. One can identify the space spanned by E,, in which
the inner product is given by G in (f.1), with the tangent space of the base space with
the same inner product. Then, it follows from ([Lf) that e, are the vielbeins of the D-
dimensional base space, namely g,[ﬁ, are the metric of the base space and « are the local
Lorentz indices for the base space. Note that %bg] gives a connection 1-form of the vector
bundle associated with the principal bundle. The spin connections, {2 ABC = EX]MQ[](/]IBC,
are determined from ([L.J) as

Qofg7 = waﬁy,
8 1
Qa D+1 5[)0{5,
o 1
Qpi1p §bﬁaa
Qpiipy1 =0, (4.6)



where waﬁ ~ are the spin connections on the base space evaluated from eﬁf]a, and byg =

Vabjy — Vba.
We start with pure Yang Mills on the (D + 1)-dimensional total space:

1 1
Spi1= — /dDHZ \/EZTT(FABFAB), (4.7)

9D+1

where dP*1z \/G represents the invariant volume. We dimensionally reduce this theory to
Yang Mills with a Higgs field on the D-dimensional base space. Since we decomposed the
(co)tangent space of the total space into the fiber direction and the directions orthogonal
to it in (£3) and ([L.F), we naturally relate the gauge fields A4 on the total space to the
gauge fields a, and the Higgs field ¢ on the base space as follows:

Ay = aq,

Apt1 = ¢, (4.8)

where we assume that the both sides in ([L.§) are independent of y;,;. By using ([£§), we
evaluate the field strength on the total space as

Fa,@ = faﬁ + ba67
Fap+1 = Dyo, (4.9)

where fo3 = Vaag — Vgag — ilaq, ag).
By using ([£.9) and vGU = /g7, we obtain from ([.7) Yang Mills with the Higgs field

¢ on the base space:?

Sp = i2 /d%\/g Tr G(faﬁ + bap®) (fap + bapd) + %DQ¢DQ¢> : (4.10)
9D

where g%, = ﬁggﬂ. Note that there appears the U(1) curvature b,g in ({4.10)

5. T-duality on fiber bundle

The discussion on the consistent truncation of Yang Mills on the total space of the principal
S1 bundle proceeds parallel to that of Yang Mills on RP x S' in section 3. By using the
discussion, we can show the T-duality between the gauge theories on the total space and
on the base space. As before, let the gauge group in ([.7) be U(M). We consider a gauge
transformation which is an analogue of V in (B.3). Such a gauge transformation should be
defined locally on each patch. It is given on 7= (Uy;) by

Vi = (5.1)

A 4 L A L 4
diag(...,eR"=1W  eR"-1YI eR™YI ’eRnsy[I]j e RS 76Rns+1y[11j o),

~~

Ns—l Ns Ns+1

2This action is formally the same as that derived in @], where the compactification of gravitational
and Yang Mills system from a direct product space-time M x S to M is considered, and b, represents
fluctuation of the metric on M x S*.



where M = ...+ Ng_1+ Ns+ Ngi1+.... Here all ng are different and must be integers due

to the single-valuedness of Vj;;. From (.I)), we can evaluate the pure-gauge background on

7 (Un) as

A = v Vi

! vl
R

1
I .
= _Eb[a] diag (..o s Ms1y e ey M1y Mgy v e oy Mgy Mgt Ty e v ey Migbly v - +)s

stl Ns Ns+1

. oV
Apsr = —iBPA 55 ;;V

1.
= Edlag(. ey Mgy e ey g1y Mgy ey Mgy M Ty e v e s Mgl s e - ) (5.2)

NS,1 Ns Ns+1

Note that AY is patch-dependent as b does. This patch-dependence originates from
considering a particular background. If there is overlap between Uy and Uy, Al is
gauge-transformed to ALY by

Vi = Vi VJ] (5.3)

nsv[H/]

7
= dia e TRMI] TR TR TR
) ) 9 ) ) )

Ns—1 N

L g1V — Lo
— R Ms 107 R"s+1V 1/
e ur' e uryLL).

Ns+1

while AD—H is invariant. e~ EUU) is nothing but the transition function between U}, and
Uiy, so that Vi is well-defined. The background (F.2) is gauge-equivalent to the trivial
background A4 = 0, which corresponds to the trivial vacuum of the theory.

As in section 3, we denote the fluctuations on 7= (Uj;) around the background (f.3)
by AY A, while we continue to use A4 for the gauge fields around the trivial background
A4 = 0, which are patch-independent. The background (f.9) is gauge-transformed to the
trivial background by VJ], so that as in (B.) we have

ALY = o= wms—noyin (1) (5.4)
We also see from (p.3)
A[j](syt) _ 6*%(”5*”15)7’[11’]Ax](s’t)_ (5.5)

We can make the Fourier transformations locally on each patch with respect to y.

On 7~ (Up), Af’t) and AT(S’” are expanded as

AS ) DU[J Z A[I 1(s, t) eRmy[z]
AW ZAU W) (e ™I (5.6)



From these equalities, we easily see that

['](s,t) _Emug g 40(st)
AA7m (x[f/]) =ef [H]AA,m ('I[I])’

AN () = BT AROO (), (57)
The relation (5.4) is translated to the relation between the KK modes:

A[gﬁ’?(ns_m) = A, (5.8)
This is of course consistent with (5.7). The theory around the trivial background of ([£7)
is equivalent to the theory around the background (.2) of (.7) under the identification of
the KK modes (F.9).

As in the RP x S' case, different consistent truncations of the theory around the trivial
vacuum of ([L7) give rise to different theories on the base space. The U(1) isometry indeed
ensures that the following truncations are consistent ones. Keeping only Ai]’%s’t) in the the-
ory around the trivial background of (.7) generates the theory around the trivial vacuum
ao =0, ¢ =0 of (.10). Keeping only AZ{(OS’U in the theory around the background (f.9)

[1](st)
A,—(ns —nt
generates the theory around a nontrivial background of ({.10), which we will discuss shortly.

is equivalent to keeping only A ) in the theory around the trivial background, and
By taking M = N x oo, Ny = N and ns = s and imposing the periodicity AS’t) = Af_t),
the T-duality between the theories on the total space and on the base space is achieved in
the same way as the RP x S! case.

It is seen from ([.§) and (5.9) that keeping only AZ]’(_S’(QS_W) results in the theory
around a background of ([£10),

&g] = _bg](ﬁa
¢ = 2rR diag(...,ns_1,... S Ms—1; Mgy - Mgy M1y -+ Tlsg 1, - - s (5.9)
N;r—l N Ns11
where R = ﬁ. It is remarkable that the gauge fields take the monopole-like config-

uration described by bl'. We discuss the quantization of the fluxes in section 6. The
background (p.9) would correspond to a vacuum of (f.1(0), because the background (f.9)

corresponds to a vacuum of ([.7). Indeed it satisfies the equations

faﬁ + baﬁ‘% = Oa
et 0,p — ilin, ¢ = 0, (5.10)

which give the conditions for the vacua.
If there is overlap between Uy, and Uy, the gauge fields and the Higgs field in Uy

and U, are related by the gauge transformation

alu — —ieﬁil“aﬁ”ﬁuq‘/ﬁ,q

6 = Vir oV, (5.11)

+ V[H’]&g]vJr

(11

,10,



We denote the (s, t) block of fluctuations around on Uy by aq 1D and S which
[1]

are identified with flgjés’t) = AZ&(’QS*m) and zzl[g_(fl’% = Agflf)i(nrnt), respectively. The

fluctuations are gauge-transformed from Uy;; to Uy as

ag/](&t) — 6_%("5 —ne)vy dg](s’t),

&[I’](Syt) — e £ (ns—no)v gg[l](s,t) ) (5.12)

For completeness, we state explicitly the T-duality in this case: the theory around (E)
of (10) with M = N x oo, Ny = N, ng = s and the periodicity condition aq () an s=t)
and @15 = $l(s=1) ig equivalent to the theory around the trivial vacuum of @ with
the gauge group U(NN) and the overall factor ), . The relation between the fields on the
total space and on the base space is given by

Ao,y Za[l (w Je Rwy[z]
Ap+1(zuy,ym) = Zgb[l(w( n)e” 'O, (5.13)

In order that the fields in the lefthand sides in (f.13) are the ones around the trivial vacuum
of (7)), they must be patch-independent. It is seen from (f.13) they are indeed patch-
independent. Interestingly, the monopole-like charges are identified with the momenta.
It is indeed easy to check explicitly that the Fourier transformation (f.1J) realizes the
T-duality, as we did in section 2.

6. Nontrivial vacua on total space

So far we have been concerned with the theory around the trivial vacuum on the total
space. In general, there are nontrivial vacua on the total space. In this section, we discuss
the nontrivial vacua on the total space and their relation to the vacua on the base space.

First, we classify the vacua on the total space. Let the gauge group of (f.7) be U(M).
The vacua of ([.7)) are given by the space of the flat connections modulo the gauge transfor-
mations, which are parameterized by the holonomies (the Wilson lines) along the nontrivial
generators of the fundamental group. Let us consider the closed loop along the fiber S*.
The Wilson line along the loop for the flat connections is diagonalized as [29, PJ

2R
W = Pexp <z/ dyinAy(x 1],y[1])>
0

. i9(1) i9(1) i0(T) ;9(T)
= diag(e?™07 . 20 Q20T 20 (6.1)

M) M(T)

where M = MW 4+ ...+ M@ and all 0@ are constants different each other and satisfying
0 < 0@ < 1. If the loop is contractable, W = 1,7, namely 7' = 1 and () = 0. In the case
of the nontrivial fiber bundles, () are in general discretized, as we will see shortly. One
can take a gauge in which A, is diagonal and constant:

~

Ay = Edlag(ﬂ( VoW ™), (6.2)
M M)



which gives (6.1). By solving the flatness condition F, l[t{y] = 0, one finds that Aﬁf] must have
the same block structure as fly and be y;;-independent:

AP (@)
AH] (xlf]) = ) (6'3)
AV @)

where the diagonal block component, AZKQ), is an M@ x M@ matrix and all the off-

(a) are determined by the flatness condition F,[fy] =0,

diagonal block components vanish. 1215]
up to the gauge transformations that are elements of U(M®M) x ... x U(MD) and y;-
independent. The vacua on the total space are parameterized by M (@), 9@ and AE](G)
modulo the gauge transformations.

Next, we examine the relation between the vacua on the total space and the base
space. Each vacuum of ({.10) is lifted up to a vacuum of ([.7). On the other hand, the
configurations given by (6.9) and (b.3) are yin-independent, so that they correspond to the
vacua on the base space. This implies that the map from the space of the vacua on the
base space to those on the total space is surjective. However, it is not injective. Suppose

that AE](G) can be block-diagonalized as

A1 (a;s—1
) A;( ) A |
Aln@ = Alnlass) — : (6.4)
2 [I(a;s+
Ap
where AE](a;s) is an Ns(a) X Ns(a) matrix and M@ = . + Ns(f)l + Ns(a) + Ns(i)l +.... Then,
by applying the gauge transformation of the type V|;;, one can shift (H(G), . ,0(“)) in fly as
0D, ..., 00@) = @ . . ) (6.5)
—— ——
M(a) M(a)
+( 9 nga)l? 9 nL(ga;)p nga)a 9 nga) 9 ngﬁ?p b nL(:ﬁl? )?
N(a—)l Néa) N(j—)l

where n&“) can be different. We denote this shifted fly by fl; The gauge-transformed

configuration described by flgj represents the same vacuum on the total space as the original
configuration described by fly. As in the case of the trivial vacuum on the total space, due

(a)

to the variety of the choices of ng’, one can consistently truncate the theory around the
vacuum of ([L.7) described by (6.9) and (f.3) in different ways to obtain different theories
on the base space. Those theories on the base space are the ones around the vacua of (.1()
given by

. 1 21 (a:
aln@s) — _E(Q(a) + nga))ngle(a) + eg]MAEJ(aaS),
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Indeed, a general solution to the vacuum condition (f.10)) takes this form in the gauge in
which ¢ is diagonal. It is seen from the first equation in (5.10) that etk AE](a;s) gives a
flat connection on the base space. It is easy to see that the T-duality also holds for the
theories around the nontrivial vacua on the total space. In fact, by making s in each block
run from —oo to oo, taking Ns(a) =N@ M@ = N@ x 5 and nga) = s and imposing the
periodicity condition on the fluctuations around (f.6), one obtains the theory around the
vacuum of (f7) described by (B-2) and (F.3) with M (@ replaced by N(®).

Finally, we comment on the quantization of the fluxes. For the vacua (6.4), the first
equation in (pb.10) implies
f(%;s) = —1(9(“) + n(a))bagl (a) (6.7)

R Ns

(7 S

The 1st Chern class evaluated from both sides of (6.7) is an element of the 2nd cohomology
class with the integer coefficients of the base manifold, H%(B,Z). If the fiber bundle
is nontrivial, the curvature of the principal St bundle, %baﬁ, is a nontrivial element of
H?(B, Z) so that we have a relation p(6(® + nga)) € Z with a certain p € Z,. This is the
quantization of the fluxes. From this relation, we can deduce

0 = @, (6.8)

p

where (@) are integers satisfying 0 < (2 < p — 1. If the fiber bundle is trivial, the
curvature is a unit element of H?(B, Z) so that we have no relation for 6(®) + n{. There
is no quantization of the fluxes in this case, and #(*) take continuous values. For example,
in U(M) Yang Mills on RP x S', the vacua are completely parameterized by M (@) and
0(®) 23, BJ. Here 6(® are continuous parameters and flﬂ = 0. The value of p should also
be determined from the structure of the fundamental group on the total space, because
the vacua on the total space are given by the space of the flat connections modulo the
gauge transformations and the flat connections are classified by the holonomies that are a
representation of the fundamental group. One can see in the next section that this is indeed
the case in some examples. Note that in the RP x S! case, m(RP x S') = m1(S!) = Z so
that there is no quantization of (%),

7. Examples

In this section, we present some examples of the T-duality for gauge theory on curved space
described as a principal S bundle. In sections 3.1, 3.2 and 3.3, we treat S3 and S®/Z;
as S' on S2, S% and S°/Z; as S! on CP? and the Heisenberg nilmanifold as S on 72,
respectively.

7.1 S% and S%/Z;, as S* on S?

We consider S? with radius 2 and regard it as the U(1) Hopf bundle on S? with radius 1.
53 with radius 2 is defined by

{(wy,w2) € C? | |wy* + |wo|* = 4}. (7.1)

,13,



The Hopf map 7 : S3 — CP! (S?) is defined by
(w1, wa) = [(wr, wa)] = {A(wy, w2)|A € C\{0}}. (7.2)

Two patches are introduced on CP!: the patch 1 (w; # 0) and the patch 2 (wy # 0). On
the patch 1 the local trivialization is given by

(w1, wz) — <w2 - > : (7.3)

—, —
w1 |’U)1|

where z—? is the local coordinate of C'P', while on the patch 2 the local trivialization is

given by

(w1, w2) — <w1 2 > : (7.4)

—, —
w9 |w2|

where ‘w”—; is the local coordinate of C'P!.

The equation ([.1]) is solved as
wy = 2cos 2 €91, wy = 2sin 2 ez, (7.5)
where 0 < 0 <7 and 0 < g1, 09 < 27. We put

p=o01—02, Y=o01+ 02, (7.6)

and can change the ranges of ¢ and ¥ to 0 < ¢ < 27 and 0 < ¢ < 4w. The periodicity is
expressed as

(0, 0,10) ~ (8, + 2w, 1) +2m) ~ (0, ¢, + 4m). (7.7)

From the local trivializations ([.3) and ([.4), one can see that 6 and ¢ are regarded as the
angular coordinates of the base space S? through the stereographic projection. The patch
1 corresponds to 0 < 6 < 7, while the patch 2 corresponds to 0 < § < 7. The metric of S3
is given as follows:

dsgs = |dwi|* + |dws|?
= db? + sin? d¢® + (dvp + cos Odp)?. (7.8)

The correspondence to the notation of section 4 is as follows:

h) = (0,¢,9 + ), v = (0, 9), ypp =9 + o,
Ay =000 —9),  aly=0,9), yg=v-¢
b([gu =0, bg] =cosf — 1,
b[;} =0, bg] =cosf + 1,
R=2 (7.9)

— 14 —



The metric and the zweibeins of the base space S? are given by

dsg2 = df? + sin? Ody?,

ey =1, e, = sinf. (7.10)
(E10) takes the form
1 , 1 , 1 , 1 )
552 =5 d@dtp sin 0Tr —(f12 — ¢) + —(D1¢) + —(Dg(b) . (711)
7 2 2 2

The vacua of (7.11)) takes the form

Gl _ g
0 -
&g] = tan§ o,
&g] = —cot g QAS,
~ 1 ..
gb = §d1ag(...,ni,l,ni,niJrl,...). (712)

The configuration of the i-th diagonal element of the gauge fields are the Dirac monopole
with the monopole charge n;/2. That n; are integers is consistent with Dirac’s quantization
condition. The vacuum of Yang Mills on S? is unique due to m1(S®) = 0. There are no
degrees of freedom corresponding to 6(® and AE], and p = 1. The value of p is also
determined consistently by

4
0

The theories around all the vacua ([.19) originate from the theory around the trivial vacuum
on S3.

As shown in the previous section in general, there holds the T-duality between the
original U(N) Yang Mills on S3 and ([.1]) with the gauge group U(N x co) and the
periodicity condition imposed.

The relationship between the gauge fields on S and the gauge fields and the Higgs
field on S? is given in (5.13) with o = 1,2.

The gauge fields on S? are expanded in terms of the vector spherical harmonics on S3,
while the gauge fields and the Higgs field on S? in this case are expanded together in terms
of the vector monopole harmonics [p4), R§]. From (5.13), one can read off the relationship
between the spherical harmonics on S and the monopole harmonics, which was found
in [[3, [[0] to show the T-duality between A" =4 SYM on R x S3(/Z};,) and 2+1 SYM on
R x S2%.

The lens space S®/Z;, (k € Z4) is defined by introducing an identification, (w1, ws) ~
(wq e , W2 e%) into the definition of S% and can also be regarded as S' on S2. The local
trivialization on the patch 1 is

(w1, w2) — (Z—j, (%)3 ; (7.14)
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while the local trivialization on the patch 2 is

(w1, ws) — (:—; (%)LC) . (7.15)

The radius of the fiber is replaced with R = % The form of the action on the base space
is the same as (F.11]). The counterpart of (F.19) is obtained by replacing ¢ in (T.13) with
(]3 = %diag(. ooy Bic1 +kni—1, Bi + kng, Bis1 + kniy1, . ..), where (; are integers and 0 < f3; <
k — 1. The values and the multiplicities of 3; label the vacua on S®/Z; and correspond to
0@ and M@ respectively. The vacua on S° /Zy, are classified by the holonomy along the
generator of 71(S%/Zy) = Zj, which can be evaluated from

47 [k .
W = Pexp z/ dyin4y | - (7.16)
0

The value of p is determined by W* =1 as p = k.

7.2 S° and S°/Z;, as S' on CP?
We regard S° as a U(1) bundle on C'P? as follows. S® with the radius 1 is defined by
{(w1, wa, ws) € C® | |wy|* + [wa|* + ws|* = 1}. (7.17)
The Hopf map 7 : S® — CP? is given by
(w1, w2, ws) — [(wy, wa, w3)] = {A(w1, w2, ws)|A € C\{0}}. (7.18)

Three patches are introduced on C'P?: the patch 1 (w; # 0), the patch 2 (wo # 0) and the
patch 3 (w3 # 0). The fiber on the patch I given by the local trivialization is parameterized
by L. (F17) is solved as

lwr]”
wi = cos x €7,
0 . L uvte
wy = sinx cos 5 e+ 55,

0 . e
w3 = sin y sin ) T+H55%), (7.19)

where 0 <7 <27, 0<x < 5,0<60 <7, 0<¢<2mand 0 < < 4r. The periodicity in
this case is given by

(X, 9’ 2 ¢a 7—) ~ (X, 9’ 2 ¢a T+ 277) ~ (Xa 95 ©, TIZ) + 47Ta 7—) ~ (X, 9’ v+ 2, ¢ + 271—, 7—1720)
The metric of S° is given by

d5%5 = |dw1|2 + |dwg|2 + |dwg|2
= dsps + w?. (7.21)
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with
1
dstpe = dx* + 1 sin? x(df? + sin® Odp* + cos? x(dy + cos Bdp)?),
1
w=dr+ 3 sin? x(dy) + cos dyp), (7.22)

where dsQC p2 18 the metric of CP?, which is called the Fubini-Study metric while w is the
connection 1-form. The correspondence to the notation of section 4 is

Z[]\ﬁ = (Xaea@’w,T)a CUﬁ} = (X,Q,QD,T,Z)), y[l] =T,
1 1
Z[]\24} = (Xa9a¢,¢,7+§(¢+¢))a :C‘FQ} :(X’9,¢a¢), y[Q] :T+§(¢+SD)’
1 1
Z[]:\g/}[ = ( 59590,7!)’7—_{_5(7:[)_%0))’ :C‘Eg} :(X’9,¢a¢), y[3]:7—+§(¢_90)5
bg{lL[Q]v[?’} — 07 bél]v[Q}v[g] — O’
N . n 1 .o
bc[p] = §SID x cos B, bw = §Sln X,
1 1
R _ L, 2 _ 2 to.2
by = 2(Sln xcosf —1), by = 2(Sln x — 1),
1 1
3] _ 2 (B] _ .2
bg,] = g(sm xcosf + 1), by, = §(s1n x—1),
R =1. (7.23)

by in ([:23) is called the gravitational and electromagnetic instanton in [2§]. The vacuum
on S% is unique. The vacua on C'P? are given by (5.9). The value of p is determined by
W = Pexp <z fo% dymAy) =lasp=1.

The lens space S°/Z; is treated in the same way as S3/Z.

7.3 Heisenberg nilmanifold as S' on 72

The Heisenberg nilmanifold [R7, PJ] is a twisted 3-torus that has the following periodicity
condition.

1

(z',2%,y) ~ (z', 2% + La,y) ~ (z', 2%,y + L) ~ (2" + L1, 2%,y — kL12?), (7.24)

where z!, 22 and y are the coordinates of the nilmanifold, and & is determined from

consistency of (7.24) as k =1 %, (I € Z). The metric of the nilmanifold is given by

ds? = (dz")? + (dz®)* + (dy + kx'da?)?. (7.25)

We regard the nilmanifold as a U(1) bundle on T? parameterized by z! and z2. We
need two patches on T2 to describe the U(1) bundle. We define the patch 1 as the region
0 < :U[ll] < L1, and the patch 2 as the region —% < x[12] < % On each patch, the
nilmanifold is locally trivialized such that it is parameterized by (x[ll],xﬁl],y[l]) on the
patch 1 and (m[12 79”[22]73/[2]) on the patch 2, where (x[ll],x[%]) are the local coordinate of the
base manifold 7% and y;,; parameterizes the S! fiber direction. On the overlap between the

two patches, the transition functions are given as follows:

Ty = Thy Ty = Thy Y = Y (7.26)
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in the region 0 < x[ll] < %, 0< x[lg] < %, and

IE[IQ] = -’E[ll] - Lla x[22] = $[21], y[?] = y[l} - 'V”'lefl]a (727)

in the region % < x[ll] < Ly, —% < m[lﬂ < 0. Note that this representation of the
nilmanifold in terms of the patches is equivalent to the definition in terms of the periodicity

condition ([7.24)).

The correspondence to the notation of section 4 is as follows:

1
b =0, b =rkaly, I=1,2,
bi2 = K,
L
R = 2—; (7.28)

b represents the constant magnetic flux with the strength [ on 72. This implies p = [.
The value of p is also determined from the structure of the fundamental group of the
Heisenberg nilmanifold. As discussed in [27], W! equals the Wilson line along an element
of the commutator subgroup of the fundamental group. For the U(1) part of the a-th block

of the gauge fields, therefore, we have

L l
<Pexp <2 / ydym;l;w)) 1 (7.29)
0

from which p = [ follows. In this case, e4* AH](Q;S) in (@) can give nontrivial Wilson lines
along the generators of the fundamental group of 72 and contribute to the classification of
the vacua. (.10) takes the form

S = ﬁ /dmdszr <%(f12 + k) + %(D1¢)2 + %(D2¢)2> . (7.30)

8. Conclusion and discussion

In this paper, we first discussed the variety of the consistent truncations from Yang Mills
on the total space to Yang Mills with the Higgs field on the base space in the trivial and
nontrivial principal S! bundles. Different consistent truncations of the theory around a
vacuum of Yang Mills on the total space yield the theories around different nontrivial vacua
of Yang Mills with the Higgs field on the base space. In the case of the nontrivial S bundles,
the nontrivial vacua on the base space have monopole-like gauge configurations. By using
this viewpoint, we showed the T-duality between the theories on the total space and the
base space in the nontrivial bundle case as well as the trivial bundle case. The difference
between these two cases is that in the nontrivial bundle case, the vacuum configurations of
the gauge fields are the monopole-like ones and the Fourier transformation must be made
locally on each patch. It is remarkable that the monopole-like charges are identified with
the momenta on the total space. We also classified the vacua on the total space and their
relation to the vacua on the base space. The quantization of the monopole-like charges
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on the base space is understood from the structure of the fundamental group on the total
space.

It is easy to add adjoint matters to Yang Mills on the total space and to introduce
supersymmetry. In [I(], we showed the T-duality between the theory around the trivial
vacuum of A" = 4 SYM on R x S3/Z;, and the theory around a vacuum of 2+1 SYM on
R x S%. Our results in this paper show that the T-duality also holds for the nontrivial
vacua of N'=4 SYM on R x S3/Zj.

In this paper, we restricted ourselves to principal U(1) bundles. Nonabelian general-
ization is important. Typical examples are S” as S (SU(2)) on S*, SU(3) as U(2) on CP?
and so on. In [IJ], we showed that the theory around each vacuum of Yang Mills with
the Higgs on S? is equivalent to the theory around a vacuum described by fuzzy spheres
of a matrix model. This means that Yang Mills on S% and S3/Z;, is realized in the matrix
model. It is interesting to examine what condition is needed in order for a gauge theory on
a fiber bundle to be realized in a matrix model. Finally, we expect to apply our findings
to (flux) compactification in string theory.
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